On three-dimensional spiral anisotropic self-avoiding walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 18 L1049
(http://iopscience.iop.org/0305-4470/18/16/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:12

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On three-dimensional spiral anisotropic self-avoiding walks

A J Guttmann and K J Wallace
Department of Mathematics, Statistics and Computer Science, The University of Newcastle, NSW 2308, Australia

Received 9 August 1985

Abstract

Two new models of three-dimensional anisotropic spiral self-avoiding walks are introduced with different types of spiral constraint. Series expansions for the two models are derived and analysed. One model is found to behave like the isotropic three-dimensional self-avoiding walk, while the other model appears to belong to a distinct universality class, with exponents $\nu \approx 0.655$ and $\gamma \approx 1.24$. It is argued that for these non-Markovian, undirected, unweighted walks, the absence of a plane of reflection symmetry in the allowed walks signals a new universality class.

Recently a variety of anistropic two-dimensional self-avoiding walks have been shown to have different critical exponents from that of ordinary (isotropic) saws. For ordinary SAWs, the two most frequently encountered exponents are γ and ν, defined by

$$
\begin{align*}
& C(x)=\sum_{n \geqslant 0} c_{n} x^{n} \sim A(1-\mu x)^{-\gamma} \\
& \left\langle R_{n}^{2}\right\rangle \sim B n^{2 \nu}, \tag{1}
\end{align*}
$$

where c_{n} is the number of distinct n-step walks with a common origin, $C(x)$ is thus their generating function, μ is a (lattice dependent) constant called the connective constant and $\left\langle R_{n}^{2}\right\rangle$ is the mean square end-to-end distance of an n-step walk, averaged over all c_{n} such walks. For the two-dimensional sAw, Nienhius $(1982,1984)$ has shown (non-rigorously) that $\gamma=43 / 32$ and $\nu=3 / 4$.

The anisotropic walks referred to above include spiral self-avoiding walks on the square lattice (Privman 1983) whose dominant critical behaviour (Blöte and Hilhorst 1984, Guttmann and Wormald 1984) was found to be completely different from that of SAWs, in that

$$
\begin{align*}
& c_{n} \sim C \exp \left[2 \pi(n / 3)^{1 / 2}\right] / n^{7 / 4} \\
& \left\langle R_{n}^{2}\right\rangle \sim D n \log (n) \tag{2}
\end{align*}
$$

so that $\nu=\frac{1}{2}$ (with a confluent logarithmic term) and γ is undefined. Manna (1984) recently introduced spiral anisotropic walks in which the spiral constraint is applied to steps along only one of the two orthogonal lattice axes. The behaviour of such walks appears to be (Guttmann and Wallace 1985)

$$
\begin{align*}
& c_{n} \sim E \mu^{n} \exp (\alpha \sqrt{n}) n^{\beta} \\
& \left\langle R_{n}^{2}\right\rangle \sim F n^{2 \nu} \tag{3}
\end{align*}
$$

with $\nu \approx 0.855$, and with μ known exactly (Whittington 1985) and $\beta \approx 0.9$.

In this letter we study two three-dimensional anisotropic spiral saws in an attempt to see whether this unusual critical behaviour (2) and (3) above carries over into three dimensions and, more importantly, in order to determine which geometrical features of a saw model control its critical behaviour.

One model we have considered is a pure spiral self-avoiding walk, defined as a self-avoiding walk on the simple cubic lattice in which no step through an angle of $-\pi / 2$ may be made. Thus the number of choices that may be made at each vertex is at most three: straight ahead, a turn through $\pi / 2$ on one orthogonal axis, or a turn through $\pi / 2$ on the other. This model is clearly a three-dimensional generalisation of the square lattice spiral saw introduced by Privman (1983). We will refer to this model as model s (for spiral). The second model retains the usual simple cubic lattice choices in four of the six axes, but steps along the z axis are constrained by the following rule: steps in the $+z$ direction can only be followed by steps in the $+z$ or $+y$ directions, while steps in the $-z$ direction can only be followed by steps in the $-z$ or $-y$ directions. This model, which we refer to as model A (for anisotropic) is a three-dimensional generalisation of Manna's anisotropic spiral saws, in that it has the spiral constraint applied to steps in one lattice direction only.

We have generated series expansions for both models, calculating c_{n} and $\left\langle R_{n}^{2}\right\rangle$ up to $n=18$ for model A and up $n=23$ for model s . The programs used an efficient backtracking algorithm, essentially comprising of nested do-loops that generated the walks in pre-order sequence, thus minimising storage requirements, in that only the current walk needs to be stored. Maximum use of symmetry was also invoked. The

Table 1. Series coefficients of the two models.

	Spiral walks (Model s)			Anisotropic walks (Model A)		
n	c_{n}	p_{n}	$\left\langle R_{n}^{2}\right\rangle$	c_{n}	ρ_{n}	$\left\langle R_{n}^{2}\right\rangle$
1	6	6	1.0000000	6	6	1.0000000
2	18	48	2.6666667	24	60	2.5000000
3	54	222	4.1111111	90	378	4.2220000
4	150	840	5.6000000	324	1992	6.1481481
5	426	2922	6.8591549	1166	9518	8.1629503
6	1158	9816	8.4766839	4138	42832	10.3508942
7	3204	32268	10.0711610	14730	184866	12.5503055
8	8682	103920	11.9695923	51992	774320	14.8930605
9	23724	327972	13.8244815	183898	3169250	17.2337383
10	64194	1016604	15.8364333	646980	12741260	19.6934372
11	174378	3104886	17.8054915	2279702	50482038	22.1441390
12	470856	9372384	19.9049901	8002976	197655176	24.6977095
13	1274430	28021722	21.9876509	28127418	766180706	27.2396388
14	3434826	83102064	24.1939662	98585096	2945067020	29.8733494
15	9272346	244684278	26.3886052	345848306	11238074498	32.4942303
16	24953004	715869972	28.6887291	1210704274	42614594360	35.1981861
17	67230288	2082493224	30.9755214	4241348770	160700082706	37.8889102
18	180705126	6027558060	33.3557669	14833284544	603058215404	40.6557438
19	486152604	17367361116	35.7240936			
20	1305430884	49839214272	38.1783631			
21	3507947838	142499394102	40.6218680			
22	9412114986	406078307556	43.144 .2145			
23	25268587338	1153665098214	45.6560979			

programs were run on a VAX 11/780, and used about 150 h and 130 h of cPU time for model A and model s respectively.

The series obtained were for $C(x)$, the sum over all $c_{n} n$-step saws square end-to-end distances $r_{n}^{2}, R(x)=\Sigma \rho_{n} x^{n}$, where $\rho_{n}=\Sigma r_{n}^{2}$, and the mean square end-to-end distance $\left\langle R_{n}^{2}\right\rangle=\rho_{n} / c_{n}$. These series are shown in table 1 .

A brief analysis of the data indicated that it was amenable to analysis by standard methods, but that the anisotropic nature of the model has slow convergence compared to the isotropic saw model.

The method of analysis of $C(x)$ and $R(x)$ upon which we placed the greatest reliance was the method of integral approximants, introduced by Guttmann and Joyce (1972) as the recurrence relation method. We utilised first- and second-order inhomogeneous integral approximants, with the degree of the inhomogeneous polynomial varying from 1 to 6 .

First-order inhomogeneous approximants can successfully mimic an algebraic singularity plus an additive analytic background term, while second-order inhomogeneous approximants can mimic an algebraic singularity, a confluent singularity and an additive analytic background term.

The results of this analysis for both models are shown in table 2 . The results are obtained from arithmetic means of all estimates obtained, with outsiders neglected, and the quoted error is $\pm 2 \sigma$, where σ is the standard deviation of each mean. Experience with other lattice models leads us to believe that this is a conservative measure of the errors.

For model A, a combination of the results obtained from both first- and second-order approximants allows us to estimate

$$
\begin{align*}
& \mu^{-1}=0.2883 \pm 0.0002 \\
& \gamma=1.16 \pm 0.02 \tag{4}\\
& \gamma+2 \nu=2.35 \pm 0.03
\end{align*}
$$

hence

$$
\nu=0.595 \pm 0.025
$$

while for model s the series are less well converged and only allow us to estimate

$$
\begin{align*}
& \mu^{-1}=0.3765 \pm 0.0002 \\
& \gamma=1.24 \pm 0.2 \tag{5}\\
& \gamma+2 \nu=2.58 \pm 0.2
\end{align*}
$$

Table 2. Analysis of critical parameters of $C(x)$ and $R(x)$ series by first- and second-order inhomogeneous integral approximants.

	Series	First-order integral approximants		Second-order integral approximants	
		μ^{-1}	exponent	μ^{-1}	exponent
Model s	$C(x)$	0.3763 ± 0.0015	1.23 ± 0.13	0.3764 ± 0.0021	1.25 ± 0.20
	$R(x)$	0.3766 ± 0.0013	2.56 ± 0.12	0.3768 ± 0.0019	2.60 ± 0.26
Model A	$C(x)$	0.28831 ± 0.00025	1.163 ± 0.026	0.28824 ± 0.00028	1.154 ± 0.029
	$R(x)$	0.28831 ± 0.00017	2.347 ± 0.036	0.28838 ± 0.00017	2.354 ± 0.021

hence

$$
\nu=0.67 \pm 0.2 .
$$

Comparing the exponent estimates to the best renormalisation group (rG) estimates for the ordinary (isotropic) saw (Le Guillou and Zinn-Justin 1980) of $\gamma=$ 1.1615 ± 0.0020 and $\nu=0.5880 \pm 0.0015$, we see that the central exponent estimates for model A are quite close to the RG estimates, while for model s both ν and γ are rather higher, but with such wide error bounds as to readily include the RG estimates.

Turning to the $\left\langle R_{n}^{2}\right\rangle$ series, we first analyse these by an elementary ratio-type method that does not take into account any confluent singularities. That is, we assume that

$$
\begin{equation*}
\left\langle R_{n}^{2}\right\rangle \sim A n^{2 \nu}\left(1+c_{1} / n+c_{2} / n^{2}+\cdots\right) . \tag{6}
\end{equation*}
$$

Estimates of ν are given by the sequences $\nu_{n}^{(1)}, \nu_{n}^{(2)}, \nu_{n}^{(3)}$ defined by

$$
\begin{align*}
& \nu_{n}^{(1)}=\frac{1}{2} \ln \left(\left\langle R_{n}^{2}\right\rangle /\left\langle R_{n-2}^{2}\right\rangle\right) / \ln (n /(n-2)] \\
& \nu_{n}^{(2)}=\left[n \nu_{n}^{(1)}-(n-2) \nu_{n-2}^{(1)}\right] / 2 \tag{7}\\
& \nu_{n}^{(3)}=\left[n^{2} \nu_{n}^{(2)}-(n-2)^{2} \nu_{n-2}^{(2)}\right] /(4 n-4)
\end{align*}
$$

where $\nu_{n}^{(2)}$ accounts for the first correction term in (6) and $\nu_{n}^{(3)}$ accounts for the next correction term. Alternate terms are used to minimise the effect of the loose-packed lattice structure. Averaging of the $\left\langle R_{n}^{2}\right\rangle$ sequence in order to minimise the effect of a singularity on the negative real axis was also undertaken, with comparable results to those obtained from the above method. Padé approximants (not shown) also gave comparable estimates.

Table 3. Estimates of exponent ν by extrapolation.

	Model S					Model A			
n		$\nu_{n}^{(1)}$	$\nu_{n}^{(2)}$	$\nu_{n}^{(3)}$		$\nu_{n}^{(1)}$	$\nu_{n}^{(2)}$		
10	0.62727	0.73753	0.51056		0.62603	0.60082	0.59836		
11	0.63055	0.63205	0.21439		0.62466	0.59647	0.58522		
12	0.62707	0.62606	0.37272		0.62095	0.59554	0.58352		
13	0.63145	0.63643	0.64746		0.61986	0.59344	0.58579		
14	0.63293	0.66807	0.78441		0.61711	0.59408	0.59005		
15	0.63749	0.67674	0.79838		0.61631	0.59324	0.59266		
16	0.63806	0.67395	0.69312		0.61419	0.59375	0.59268		
17	0.64022	0.66072	0.60439		0.61358	0.59312	0.59269		
18	0.63985	0.65418	0.57977		0.61191	0.59367	0.59335		
19	0.64117	0.64917	0.60281						
20	0.64084	0.64976	0.63092						
21	0.64187	0.64857	0.64586						
22	0.64148	0.64790	0.63907						
23	0.64213	0.64481	0.62595						

The results obtained are shown in table 3 for both models. For model a we estimate $\nu=0.592 \pm 0.005$, while for model s we find $\nu=0.645 \pm 0.015$. These results clearly suggest that model a has the same exponent as the isotropic SAW model, while model s is in a different universality class.

Now it can be argued that the correction terms assumed in (6) are almost certainly wrong, and that confluent terms are likely to be present. While this is true, it does not invalidate the above analysis. Rather, the presence of confluent terms will slow the apparent rate of convergence, and this is reflected in wider error bars.

An alternative method of analysis focuses on the question whether ν is the same as, or different from, the value of ν for isotropic saws by considering the exponent ϕ defined by

$$
\begin{equation*}
\left\langle R_{n}^{2}\right\rangle_{X} /\left\langle R_{n}^{2}\right\rangle_{\mathrm{SAW}} \sim C n^{2 \phi_{X}} \tag{8}
\end{equation*}
$$

where $\phi_{X}=\nu_{X}-\nu_{\text {SAW }}$ for any model X.
For the saw series on the simple cubic lattice, we have extended the series by four additional terms (to $n=19$) (Guttmann 1985a) which allows us to form the quotient on the lhs of (8) for all coefficients for model A, and coefficients up to $n=19$ for model s. Estimates of ϕ can be found from the sequences defined by (7), and these are shown in table 4.

For model A we see that linear extrapolants already suggest $|\phi|<0.0036$, while quadratic extrapolants are smaller still. For model s the exponent estimates are increasing, suggesting $\phi>0.039$, while linear extrapolants are less well behaved, nevertheless suggesting $\phi \leqslant 0.052$. These results reinforce our earlier conclusion that model A is in the same universality class as isotropic saws, while model s appears to be in a new, distinct universality class.

Table 4. Estimates of exponent ϕ as defined in equation (8).

	n	$\left\langle R_{n}^{2}\right\rangle_{\boldsymbol{X}} /\left\langle R_{n}^{2}\right\rangle$	$\phi_{n}^{(1)}$	$\phi_{n}^{(2)}$	$\phi_{n}^{(3)}$
	7	0.924194	-0.038019	0.138816	
	8	0.931842	-0.005004	0.261186	
	9	0.935314	0.023796	0.240145	
	10	0.941678	0.023528	0.137653	
	11	0.945021	0.025725	0.034409	
	12	0.949990	0.024099	0.026959	
	13	0.953823	0.027748	0.038876	
	14	0.958995	0.030601	0.069608	
	15	0.936331	0.034659	0.079579	
	16	0.968336	0.036297	0.076169	
	17	0.972564	0.038104	0.063938	
	18	0.977179	0.038592	0.056956	
	19	0.981179	0.039644	0.052740	
	7				
	8	1.151696	0.030408	0.004821	-0.039643
	9	1.159437	0.027623	-0.001815	-0.035652
	10	1.171026	0.024510	0.003864	0.002398
	11	1.175293	0.022287	0.000943	0.005845
	12	1.178728	0.019840	-0.001174	-0.011375
	13	1.181654	0.016154	-0.003568	-0.013820
	14	1.184113	0.014783	-0.004117	-0.011537
	15	1.186221	0.013478	-0.003916	-0.006648
	16	1.188051	0.012432	-0.004023	-0.003310
	17	1.189629	0.011462	-0.003657	-0.002747
	18	1.191037	0.010656	-0.003554	-0.001787

If we ask why these two models differ in their universality class given that they are non-Markovian, non-directed and unweighted, a relevant observation seems to be that, if one considers all possible n-step walks, then there is a plane of reflection symmetry for model A walks and no plane of symmetry for model s walks. For model A walks, the $y z$ plane is a plane of reflection symmetry. For both models there is at least one axis of rotational symmetry, but this appears unimportant. As we argue in Guttmann (1985b), the absence of a plane of reflection symmetry appears to signal a new universality class in all known cases in both two and three dimensions. These models then seem to fit this empirical observation. In two dimensions the spiral saws and Manhattan and L lattice saws (Guttmann 1983) are found to display behaviour supporting this hypothesis. The spiral saws have no axis of reflection symmetry and belong to a new universality class, while the Manhattan and L lattice saws appear to belong to the same universality class as the ordinary square lattice saw, and do possess at least one axis of reflection symmetry.

In three dimensions the spiral constraint, as displayed in model s, is clearly weaker than its two-dimensional counterpart. This has the effect of producing a small ($\sim 10 \%$) increase in the critical exponents ν and γ, while in two dimensions the functional form of $C(x)$ for spiral saws is quite different from its isotropic counterpart, with a growth term $\exp \left[2 \pi(n / 3)^{1 / 2}\right]$.

References

Blöte H W and Hilhorst H J 1984 J. Phys. A: Math. Gen. 17 L111
Guttmann A J 1983 J. Phys. A: Math. Gen. 163885

- 1985a in preparation
- 1985b in preparation

Guttmann A J and Joyce G S 1972 J. Phys. A: Gen. Phys. 5 L81
Guttmann A J and Wallace K J 1985 submitted
Guttmann A J and Wormald N C 1984 J. Phys. A: Math. Gen. 17 L271
Le Guillou J C and Zinn-Justin J 1980 Phys. Rev. B 213976
Manna S S 1984 J. Phys. A: Math. Gen. 17 L899
Nienhuis B 1982 Phys. Rev. Lett. 491062

- 1984 J. Stat. Phys. 34731

Privman V 1983 J. Phys. A: Math. Gen. 16 L571
Whittington S G 1985 J. Phys. A: Math. Gen. 18 L67

