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LETTER TO THE EDITOR 

On three-dimensional spiral anisotropic self-avoiding walks 

A J Guttmann and K J Wallace 
Department of Mathematics, Statistics and Computer Science, The University of Newcastle, 
NSW 2308, Australia 

Received 9 August 1985 

Abstract. Two new models of three-dimensional anisotropic spiral self-avoiding walks are 
introduced with different types of spiral constraint. Series expansions for the two models 
are derived and analysed. One model is found to behave like the isotropic three-dimensional 
self-avoiding walk, while the other model appears to belong to a distinct universality class, 
with exponents v = 0.655 and y = 1.24. It is argued that for these non-Markovian, undirec- 
ted, unweighted walks, the absence of a plane of reflection symmetry in the allowed walks 
signals a new universality class. 

Recently a variety of anistropic two-dimensional self-avoiding walks have been shown 
to have different critical exponents from that of ordinary (isotropic) SAWS. For ordinary 
SAWS, the two most frequently encountered exponents are y and U, defined by 

C ( X ) =  C c,x“-A( l -pX) -Y 
n=O 

( R i )  - Bn”, (11 

where c, is the number of distinct n-step walks with a common origin, C ( x )  is thus 
their generating function, p is a (lattice dependent) constant called the connective 
constant and ( R i )  is the mean square end-to-end distance of an n-step walk, averaged 
over all c, such walks. For the two-dimensional SAW, Nienhius (1982,1984) has shown 
(non-rigorously) that y = 43/32 and v = 314. 

The anisotropic walks referred to above include spiral self-avoiding walks on the 
square lattice (Privman 1983) whose dominant critical behaviour (Blote and Hilhorst 
1984, Guttmann and Wormald 1984) was found to be completely different from that 
of SAWS, in that 

c, - C exp[2~(n/3)”’]/n’’~ 

( R t )  - Dn log( n )  (2) 

so that v = 4 (with a confluent logarithmic term) and y is undefined. Manna (1984) 
recently introduced spiral anisotropic walks in which the spiral constraint is applied 
to steps along only one of the two orthogonal lattice axes. The behaviour of such 
walks appears to be (Guttmann and Wallace 1985) 

C, - ~ p ”  e x p ( a J i ) n P  

( R i )  - Fn’” (3) 
with v = 0.855, and with p known exactly (Whittington 1985) and p = 0.9. 
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In this letter we study two three-dimensional anisotropic spiral SAWS in an attempt 
to see whether this unusual critical behaviour (2) and (3) above carries over into three 
dimensions and, more importantly, in order to determine which geometrical features 
of a SAW model control its critical behaviour. 

One model we have considered is a pure spiral self-avoiding walk, defined as a 
self-avoiding walk on the simple cubic lattice in which no step through an angle of 
- ~ / 2  may be made. Thus the number of choices that may be made at each vertex is 
at most three: straight ahead, a turn through ~ / 2  on one orthogonal axis, or a turn 
through ~ / 2  on the other. This model is clearly a three-dimensional generalisation of 
the square lattice spiral SAW introduced by Privman (1983). We will refer to this model 
as model s (for spiral). The second model retains the usual simple cubic lattice choices 
in four of the six axes, but steps along the z axis are constrained by the following 
rule: steps in the +z direction can only be followed by steps in the + z  or S y  directions, 
while steps in the - z  direction can only be followed by steps in the - z  or - y  directions. 
This model, which we refer to as model A (for anisotropic) is a three-dimensional 
generalisation of Manna’s anisotropic spiral SAWS, in that it has the spiral constraint 
applied to steps in one lattice direction only. 

We have generated series expansions for both models, calculating c, and ( R i )  up 
to n = 18 for model A and up n = 23 for model s.  The programs used an efficient 
backtracking algorithm, essentially comprising of nested do-loops that generated the 
walks in pre-order sequence, thus minimising storage requirements, in that only the 
current walk needs to be stored. Maximum use of symmetry was also invoked. The 

Table 1. Series coefficients of the two models. 

Spiral walks (Model s) Anisotropic walks (Model A) 

n C” P. (R2,) cn P. W2,) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

6 
18 
54 

150 
426 

1158 
3 204 
8 682 

23 724 
64 194 

174 378 
470 856 

1 274 430 
3 434 826 
9 272 346 

24 953 004 
67 230 288 

180 705 126 
486 152 604 

1305430884 
3507947838 
9412114986 

25268587338 

6 
48 

222 
840 

2 922 
9 816 

32 268 
103 920 
327 972 

1 016 604 
3 104 886 
9 372 384 

28 021 722 
83 102 064 

244 684 278 
715 869 972 

2082493224 
6027558060 

17367361 116 
49839214272 

142499394102 
406 078 307 556 

1153665098214 

1.000 0000 
2.666 6661 
4.111 1111 
5.600 0000 
6.859 1549 
8.476 6839 

10.071 1610 
11.969 5923 
13.8244815 
15.836 4333 
17.805 4915 
19.904 9901 
21.987 6509 
24.193 9662 
26.388 6052 
28.688 7291 
30.975 5214 
33.355 7669 
35.724 0936 
38.178 3631 
40.621 8680 
43,144,2145 
45.656 0979 

6 
24 
90 

324 
1166 
4 138 

14 730 
51 992 

183 898 
646 980 

2 279 702 
8 002 976 

28 127 418 
98 585 096 

345 848 306 
1210704274 
4 241 348 770 

14833284544 

6 
60 

378 
1992 
9 518 

42 832 
184 866 
774 320 

3 169 250 
12 741 260 
50 482 038 

197 655 176 
766 180 706 

2945067020 
11238074498 
42614594360 

160700082706 
603 058 215 404 

1.000 0000 
2.500 0000 
4.222 0000 
6.148 1481 
8.162 9503 

10.350 8942 
12.550 3055 
14.893 0605 
17.233 7383 
19.693 4372 
22.144 1390 
24.697 7095 
27.239 6388 
29.873 3494 
32.494 2303 
35.198 1861 
37.888 9102 
40.655 7438 
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programs were run on a VAX 11/780, and used about 150 h and 130 h of CPU time 
for model A and model s respectively. 

The series obtained were for C ( x ) ,  the sum over all c, n-step SAWS square end-to-end 
distances r t ,  R ( x )  = Xpnxn,  where pn = X r i ,  and the mean square end-to-end distance 
(R: )  = pn/cn.  These series are shown in table 1 .  

A brief analysis of the data indicated that it was amenable to analysis by standard 
methods, but that the anisotropic nature of the model has slow convergence compared 
to the isotropic SAW model. 

The method of analysis of C ( x )  and R ( x )  upon which we placed the greatest 
reliance was the method of integral approximants, introduced by Guttmann and Joyce 
(1972) as the recurrence relation method. We utilised first- and second-order 
inhomogeneous integral approximants, with the degree of the inhomogeneous poly- 
nomial varying from 1 to 6. 

First-order inhomogeneous approximants can successfully mimic an algebraic 
singularity plus an additive analytic background term, while second-order 
inhomogeneous approximants can mimic an algebraic singularity, a confluent singular- 
ity and an additive analytic background term. 

The results of this analysis for both models are shown in table 2. The results are 
obtained from arithmetic means of all estimates obtained, with outsiders neglected, 
and the quoted error is *2u, where U is the standard deviation of each mean. Experience 
with other lattice models leads us to believe that this is a conservative measure of the 
errors. 

For model A, a combination of the results obtained from both first- and second-order 
approximants allows us to estimate 

F-' = 0.2883 * 0.0002 

y =  1.16k0.02 

y + 2v = 2.35 k 0.03 

v = 0.595 k 0.025, 
hence 

(4) 

while for model s the series are less well converged and only allow us to estimate 

F-' = 0.3765 * 0.0002 

y =  1.24k0.2 (5) 
y +  2v = 2.58 k0.2 

Table 2. Analysis of critical parameters of C ( x )  and R ( x )  series by first- and second-order 
inhomogeneous integral approximants. 

First-order integral approximants Second-order integral approximants 

Series p-l exponent / . - I  exponent 

Model C ( x )  0.3763f0.0015 1.23 f 0.13 0.3764i  0.0021 1.25 f 0.20 
R ( x )  0.3766 f 0.0013 2.56i0.12 0.3768 f 0.0019 2.60 f 0.26 

Model A C(x) 0.288 31*0.00025 1.163i0.026 0.288 24*0.000 28 1.154k0.029 
R ( x )  0.288 31k0.000 17 2.347k0.036 0.288 38i0.000 17 2.354k0.021 
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hence 

v = 0.67 * 0.2. 

Comparing the exponent estimates to the best renormalisation group ( RG) estimates 
for the ordinary (isotropic) SAW (Le Guillou and Zinn-Justin 1980) of y =  
1.1615*0.0020 and v = 0.5880*0.0015, we see that the central exponent estimates for 
model A are quite close to the RG estimates, while for model s both Y and y are rather 
higher, but with such wide error bounds as to readily include the RG estimates. 

Turning to the ( R t )  series, we first analyse these by an elementary ratio-type method 
that does not take into account any confluent singularities. That is, we assume that 

(R:) - An2"( 1 + c,/n + c2/n2+ - - .). ( 6 )  

Estimates of v are given by the sequences v!,", vk2', vk3) defined by 

where vf' accounts for the first correction term in (6) and v','' accounts for the next 
correction term. Alternate terms are used to minimise the effect of the loose-packed 
lattice structure. Averaging of the (R:) sequence in order to minimise the effect of a 
singularity on the negative real axis was also undertaken, with comparable results to 
those obtained from the above method. PadC approximants (not shown) also gave 
comparable estimates. 

Table 3. Estimates of exponent Y by extrapolation. 

10 0.627 27 0.737 53 0.510 56 0.626 03 0.600 82 0.598 36 
11 0.630 55 0.632 05 0.214 39 0.624 66 0.596 47 0.585 22 
12 0.627 07 0.626 06 0.372 12 0.620 95 0.595 54 0.583 52 
13 0.631 45 0.636 43 0.647 46 0.619 86 0.593 44 0.585 19 
14 0.632 93 0.668 07 0.784 41 0.617 11 0.594 08 0.590 05 
15 0.637 49 0.676 74 0.798 38 0.616 31 0.593 24 0.592 66 
16 0.638 06 0.673 95 0.693 12 0.614 19 0.593 75 0.592 68 
17 0.640 22 0.660 72 0.604 39 0.613 5 8  0.593 12 0.592 69 
18 0.639 85 0.654 18 0.579 77 0.611 91 0.593 67 0.593 35 
19 0.641 17 0.649 17 0.602 81 
20 0.640 84 0.649 76 0.630 92 
21 0.641 87 0.648 5: 0.645 86 
22 0.641 48 0.647 90 0.639 07 
23 0.642 13 0.644 81 0.625 95 

The results obtained are shown in table 3 for both models. For model A we estimate 
v = 0.592* 0.005, while for model s we find v = 0.645 *0.015. These results clearly 
suggest that model A has the same exponent as the isotropic SAW model, while model 
s is in a different universality class. 
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Now it can be argued that the correction terms assumed in ( 6 )  are almost certainly 
wrong, and that confluent terms are likely to be present. While this is true, it does not 
invalidate the above analysis. Rather, the presence of confluent terms will slow the 
apparent rate of convergence, and this is reflected in wider error bars. 

An alternative method of analysis focuses on the question whether v is the same 
as, or different from, the value of v for isotropic SAWS by considering the exponent 4 
defined by 

where bX = vx - vSAW for any model X .  
For the SAW series on the simple cubic lattice, we have extended the series by four 

additional terms (to n = 19) (Guttmann 1985a) which allows us to form the quotient 
on the LHS of (8) for all coefficients for model A, and coefficients up to n = 19 for 
model s. Estimates of 4 can be found from the sequences defined by (7), and these 
are shown in table 4. 

For model A we see that linear extrapolants already suggest 141 <0.0036, while 
quadratic extrapolants are smaller still. For model s the exponent estimates are 
increasing, suggesting 4 > 0.039, while linear extrapolants are less well behaved, 
nevertheless suggesting 4 6 0.052. These results reinforce our earlier conclusion that 
model A is in the same universality class as isotropic SAWS, while model s appears to 
be in a new, distinct universality class. 

Table 4. Estimates of exponent 4 as defined in equation (8). 

n 

7 
8 
9 

10 
11 
12 

Model s 13 
14 
15 
16 
17 
18 
19 

7 
8 
9 

10 
11 
12 
13 

Model A 

14 
15 
16 
17 
18 

0.924 194 
0.931 842 
0.935 314 
0.941 678 
0.945 021 
0.949 990 
0.953 823 
0.958 995 
0.936 331 
0.968 336 
0.972 564 
0.977 179 
0.981 179 

1.151 696 
1.159437 
1.165 972 
1.171 026 
1.175 293 
1.178 728 
1.181 654 
1.184 113 
1.186 221 
1.188 051 
1.189 629 
1.191 037 

~~ 

-0.038 019 
-0.005 004 

0.023 796 
0.023 528 
0.025 725 
0.024 099 
0.027 748 
0.030 601 
0.034 659 
0.036 297 
0.038 104 
0.038 592 
0.039 644 

0.030 408 
0.027 623 
0.024 510 
0.022 287 
0.019 840 
0.017 978 
0.016 154 
0.014 783 
0.013 478 
0.012 432 
0.01 1 462 
0.010 656 

4 2 )  

0.138 816 
0.261 186 
0.240 145 
0.137 653 
0.034 409 
0.026 959 
0.038 876 
0.069 608 
0.079 579 
0.076 169 
0.063 938 
0.056 956 
0.052 740 

0.004 821 
-0.001 815 

0.003 864 
0.000 943 

-0.001 174 
-0.003 568 
-0.004 117 
-0.004 385 
-0.003 916 
-0.004 023 
-0.003 657 
-0.003 554 

-0.039 643 
-0.035 652 

0.002 398 
0.005 845 

-0.01 1 375 
-0.013 820 
-0.011 537 
-0.006 648 
-0.003 310 
-0.002 840 
-0.002 747 
-0.001 787 
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If we ask why these two models differ in their universality class given that they are 
non-Markovian, non-directed and unweighted, a relevant observation seems to be that, 
if one considers all possible n-step walks, then there is a plane of reflection symmetry 
for model A walks and no plane of symmetry for model s walks. For model A walks, 
the yz  plane is a plane of reflection symmetry. For both models there is at least one 
axis of rotational symmetry, but this appears unimportant. As we argue in Guttmann 
(1985b), the absence of a plane of reflection symmetry appears to signal a new 
universality class in all known cases in both two and three dimensions. These models 
then seem to fit this empirical observation. In two dimensions the spiral SAWS and 
Manhattan and L lattice SAWS (Guttmann 1983) are found to display behaviour 
supporting this hypothesis. The spiral SAWS have no axis of reflection symmetry and 
belong to a new universality class, while the Manhattan and L lattice SAWS appear to 
belong to the same universality class as the ordinary square lattice SAW, and do possess 
at least one axis of reflection symmetry. 

In three dimensions the spiral constraint, as displayed in model s ,  is clearly weaker 
than its two-dimensional counterpart. This has the effect of producing a small (- 10% ) 
increase in the critical exponents v and y, while in two dimensions the functional form 
of C(x) for spiral SAWS is quite different from its isotropic counterpart, with a growth 
term exp[2.r(n/3)”’]. 
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